Effective Field Theory Large Scale Structure

the way to go for inflation

A talk about

- A nice EFT
- Some GR
- high-energy techniques applied to a novel setting
- what the 10 year future of inflationary cosmology stands on
- as I am now going to argue

How do we probe inflation

The only observable we are testing from the background solution is

$$\Omega_K \lesssim 3 \times 10^{-3}$$

- All the rest, comes from the fluctuations
- For the fluctuations
- they are primordial
- they are scale invariant
- they have a tilt $n_s-1 \simeq -0.04 \sim \mathcal{O}\left(\frac{1}{N_e}\right)$
- they are quite gaussian

both scalar and maybe tensors

Limits in terms of parameters of a Lagrangian

$$S = \int d^4x \sqrt{-g} \left[-\frac{M_{\rm Pl}^2 \dot{H}}{c_s^2} \left(\dot{\pi}^2 - c_s^2 \frac{(\partial_i \pi)^2}{a^2} \right) + (M_{\rm Pl}^2 \dot{H}) \frac{1 - c_s^2}{c_s^2} \left(\frac{\dot{\pi} (\partial_i \pi)^2}{a^2} + \frac{A}{c_s^2} \dot{\pi}^3 \right) + \cdots \right]$$

with C. Cheung, P. Creminelli, L. Fitzpatrick, J. Kaplan JHEP 2008

What has Planck done to theory?

- Planck improve limits wrt WMAP by a factor of ~ 3 .
- $ext{NG} \sim rac{H^2}{\Lambda_{II}^2}$ $\Lambda_U^{
 m min, Planck} \simeq 2 \; \Lambda_H^{
 m min, WMAP}$
- Given the absence of known or nearby threshold, this is not much.
- Planck was great
- but Planck was not good enough
- not Plank's fault, but Nature's faults
- Please complain with Nature
- Planck was an opportunity for a detection, not much an opportunity to change the theory in absence of detection (luckily WMAP had a tilt a 2.5 σ , so we got to 6 σ)
- On theory side, little changes
- contrary for example to LHC, which was crossing thresholds
- Any result from LHC is changing the theory

Cosmology is going to change in a few months

- Tremendous progress has been made through observation of the primordial fluctuations
- In order to increase our knowledge of Inflation, we need more modes
- Planck will soon have observed all the modes from the CMB
- and then what?
- I will assume we are not lucky
- no B-mode detection
- no signs from the beginning of inflation
- Unless we find a way to get more modes, the game is over
- Large Scale Structures offer the only medium-term place for hunting for more modes
- but we are compelled to understand them
- I do not think, so far, we understand them well enough

What is next?

- Euclid and LSST like: this is our only next chance
- we need to understand how many modes are available

Number of modes
$$\sim \left(\frac{k_{\text{max}}}{k_{\text{min}}}\right)$$

Need to understand short distances

The Effective Field Theory of

Cosmological Large Scale Structures

Redshift Space distortions in the EFTofLSS

with Zaldarriaga 1409

Bias in the EFTofLSS

me alone 1406

The one-loop bispectrum in the EFTofLSS

with Angulo, Foreman, Schmittful 1406 see also Baldauf, Mirbabayi, Mercolli, Pajer 1406

The IR-resummed EFTofLSS

with Zaldarriaga 1404

The Lagrangian-space EFTofLSS

with Porto and Zaldarriaga JCAP1405

with Carrasco, Foreman and Green JCAP1407

The EFTofLSS at 2-loops

with Carrasco, Foreman and Green JCAP1407

The 2-loop power spectrum and the IR safe integrand

with Carrasco and Hertzberg **JHEP 2012**

The Effective Theory of Large Scale Structure (EFTofLSS)

with Baumann, Nicolis and Zaldarriaga JCAP 2012

Cosmological Non-linearities as an Effective Fluid

A well defined perturbation theory

Non-linearities at short scale

A well defined perturbation theory

Non-linearities at short scale

A well defined perturbation theory

- Standard perturbation theory is not well defined
- Standard techniques

- perfect fluid
$$\dot{\rho} + \partial_i \left(\rho v^i \right) = 0$$
,
- expand in $\delta \sim \frac{\delta \rho}{}$ and solve iteratively

expand in
$$\delta \sim \frac{\delta \rho}{\rho}$$
 and solve iteratively

$$\delta^{(n)} \sim \int \text{GreenFunction} \times \text{Source}^{(n)} \left[\delta^{(1)}, \delta^{(2)}, \dots, \delta^{(n-1)} \right]$$

$$\Rightarrow \langle \delta_k^{(2)} \delta_k^{(2)} \rangle \sim \int d^3k' \langle \delta_{k-k'}^{(1)} \delta_{k-k'}^{(1)} \rangle \langle \delta_{k'}^{(1)} \delta_{k'}^{(1)} \rangle$$

Perturbative equations break in the UV

$$- \delta \sim \frac{k}{k_{NL}} \gg 1 \quad \text{for} \quad k \gg k_{NL}$$

no perfect fluid if we truncate

Idea of the Effective Field Theory

Consider a dielectric material

- Very complicated on atomic scales $d_{
 m atomic}$
- On long distances $d \gg d_{\rm atomic}$
- we can describe atoms with their gross characteristics
- polarizability $\vec{d}_{ ext{dipole}} \sim lpha \, \vec{E}_{ ext{electric}}$: average response to electric field
- we are led to a uniform, smooth material, with just some macroscopic properties
- we simply solve Maxwell dielectric equations, we do not solve for each atom.
- The universe looks like a dielectric

Consider a dielectric material

- Very complicated on atomic scales $d_{
 m atomic}$
- On long distances $d \gg d_{\rm atomic}$
- we can describe atoms with their gross characteristics
- polarizability $\vec{d}_{ ext{dipole}} \sim lpha \, \vec{E}_{ ext{electric}}$: average response to electric field
- we are led to a uniform, smooth material, with just some macroscopic properties
- we simply solve Maxwell dielectric equations, we do not solve for each atom.
- The universe looks like a dielectric

Dielectric Fluid

Bottom line result

- A well defined perturbation theory
- 2-loop in the EFT, with IR resummation

Data go as

: naively factor of 200 more modes than before

With this

With this

Construction of the Effective Field Theory

Point-like Particle versus Extended Objects

- On short distances, we have point-like particles
- they move

$$\frac{d^2\vec{z}(\vec{q},\eta)}{d\eta^2} + \mathcal{H}\frac{d\vec{z}(\vec{q},\eta)}{d\eta} = -\vec{\partial}_x \Phi[\vec{z}(\vec{q},\eta)]$$

induce overdensities

$$1 + \delta(\vec{x}, \eta) = \int d^3q \; \delta^{(3)}(\vec{x} - \vec{z}(\vec{q}, \eta))$$

Source gravity

$$\partial^2 \Phi(\vec{x}) = \mathcal{H}^2 \delta(\vec{x})$$

Point-like Particle versus Extended Objects

- But we cannot describe point-like particles: we need to focus on long distances.
- We deal with Extended objects
- they move differently:

$$\frac{d^2 \vec{z}(\vec{q}, \eta)}{d\eta^2} + \mathcal{H} \frac{d\vec{z}(\vec{q}, \eta)}{d\eta} = -\vec{\partial}_x \Phi[\vec{z}(\vec{q}, \eta)]$$

- But we cannot describe point-like particles: we need to focus on long distances.
- We deal with Extended objects
- they move differently:

$$\frac{d^2 \vec{z}_L(\vec{q}, \eta)}{d\eta^2} + \mathcal{H} \frac{d\vec{z}_L(\vec{q}, \eta)}{d\eta} = -\vec{\partial}_x \left[\Phi_L[\vec{z}_L(\vec{q}, \eta)] + \frac{1}{2} Q^{ij}(\vec{q}, \eta) \partial_i \partial_j \Phi_L[\vec{z}_L(\vec{q}, \eta)] + \cdots \right] + \vec{a}_S(\vec{q}, \eta)$$

Point-like Particle versus Extended Objects

They induce number over-densities and real-space multipole moments

$$1 + \delta_{n,L}(\vec{x},\eta) \equiv \int d^3\vec{q} \, \delta^3(\vec{x} - \vec{z}_L(\vec{q},\eta)) ,$$

$$Q^{i_1 \dots i_p}(\vec{x},\eta) \equiv \int d^3\vec{q} \, Q^{i_1 \dots i_p}(\vec{q},\eta) \delta^3(\vec{x} - \vec{z}_L(\vec{q},\eta))$$

they source gravity with the `overall' mass

$$\begin{split} \partial_x^2 \Phi_L &= \frac{3}{2} \mathcal{H}^2 \Omega_m \left(\delta_{n,L}(\vec{x},\eta) + \frac{1}{2} \partial_i \partial_j \mathcal{Q}^{ij}(\vec{x},\eta) - \frac{1}{6} \partial_i \partial_j \partial_k \mathcal{Q}^{ijk}(\vec{x},\eta) + \cdots \right) \equiv \frac{3}{2} \mathcal{H}^2 \Omega_m \delta_{m,L}(\vec{x},\eta) \\ &\sim \text{Energy}_{\text{electrostatic}} = q \, V + \vec{d} \cdot \vec{E} + \dots \end{split}$$

- These equations can be derived from smoothing the point-particle equations
- but actually these are the assumption-less equations

How do we treat the new terms?

Similar to treatment of material polarizability: $d_{
m dipole} \sim d_{
m intrinsic} + \alpha \, \vec{E}$

Take moments:

$$Q^{ij} = \langle Q^{ij} \rangle_S + Q_S^{ij} + Q_R^{ij}$$

Expectation value

$$\langle Q^{ij}\rangle_{\mathcal{S}}=l_S^2(\eta)\delta_{ij}$$

Response (non-local in time) $Q_{ij,\mathcal{R}} \sim l_1(\eta)^2 \; \partial_i \partial_j \Phi_L(\vec{z}_L(\vec{q},\eta))$

Stochastic noise

$$\langle Q_S \rangle = 0 \qquad \langle Q_S Q_S \dots \rangle \neq 0$$

Overall

$$Q_{ij}(\vec{x},t) = l_0^2(t) \, \delta_{ij} + l_1^2(t) \, \partial_i \partial_j \Phi(\vec{x},t) + \dots$$

In summary: we obtain an expression just in terms of long-wavelength variables

$$\frac{\partial^{2}}{H^{2}}\Phi(\vec{x},t) = \delta(\vec{x},t) + \partial_{i}\partial_{j}Q_{ij}\left(\delta(\vec{x},t),\ldots\right) + \ldots$$

This EFT is non-local in time

- For local EFT, we need hierarchy of scales.
- In space we are ok

In time we are not ok: all modes evolve with time-scale of order Hubble

with Carrasco, Foreman and Green 1310

Carroll, Leichenauer, Pollak 1310

- ⇒ The EFT is local in space, non-local in time
- Technically it does not affect much because the linear propagator is local in space

When do we stop?

- Similar to treatment for material polarizability: $\vec{d}_{\text{dipole}} \sim \alpha \, \vec{E}_{\text{electric}}$, $Q_{ij}^{\text{electric}} = c \, E_i E_j$, ...
- Short distance physics is taken into account by expectation value, response, and noise
- Poisson equation breaks when $\delta_{n,L}(\vec{x},\eta) \sim \partial_i \partial_j \mathcal{Q}^{ij}(\vec{x},\eta)$
- gravitational potential from quadrupole moment ~ the one from center of mass
- By dimensional analysis, this happens for distances shorter than a critical length
- the non-linear scale $k \gtrsim k_{\rm NL}$
- on long distances, $k \ll k_{\rm NL}$, write as many terms as precision requires.
- Manifestly convergent expansion in

$$\left(rac{k}{k_{
m NL}}
ight) \ll 1$$

Connecting with the Eulerian Treatment

In the universe, finite-size particles move

$$\vec{z}(\vec{q},t) = \vec{q} + \vec{s}(\vec{q},t)$$

In Eulerian, we do: we describe particles from a fixed position

Expand in
$$k s \ll 1$$

There are three expansion parameters for a given wavenumber

$$\epsilon_{s>} = k^2 \int_k^\infty \frac{d^3k'}{(2\pi)^3} \frac{P_{11}(k')}{k'^2} ,$$

$$\epsilon_{\delta<} = \int_0^k \frac{d^3k'}{(2\pi)^3} P_{11}(k') ,$$

Effect of Short Displacements

Effect of Long Overdensities

 $\epsilon_{s<} = k^2 \int_0^k \frac{d^3k'}{(2\pi)^3} \frac{P_{11}(k')}{k'^2}$ Lagrangian does not expands in this Effect of Long Displacements:

The Effect of Long Displacements

 $\epsilon_{s<} = k^2 \int_0^k \frac{d^3k'}{(2\pi)^3} \frac{P_{11}(k')}{k'^2}$

Imagine a mode

The Effect of Long Displacements

Add a long `trivial' force (trivial by GR)

$$\epsilon_{s<} = k^2 \int_0^k \frac{d^3k'}{(2\pi)^3} \frac{P_{11}(k')}{k'^2}$$

Just Translation

The Effect of Short Displacement

Add a long `trivial' force (trivial by GR)

$$\epsilon_{s>} = k^2 \int_k^\infty \frac{d^3k'}{(2\pi)^3} \frac{P_{11}(k')}{k'^2}$$

Deformation

The Effect of Tidal Forces

Add a long `trivial' force (trivial by GR)

 $\epsilon_{\delta <} = \int_0^k \frac{d^3k'}{(2\pi)^3} P_{11}(k') ,$

Deformation

Connecting with the Eulerian Treatment

- Expand in all parameters (Eulerian treatment)
- The resulting equations are equivalent to Eulerian fluid-like equations

$$\nabla^2 \phi = H^2 \frac{\delta \rho}{\rho}$$

$$\partial_t \rho + H \rho + \partial_i (\rho v^i) = 0$$

$$\dot{v}^i + H v^i + v^j \partial_j v^i = \frac{1}{\rho} \partial_j \tau^{ij}$$

here it appears a non trivial stress tensor for the long-distance fluid

$$\tau_{ij} = p_0 \,\delta_{ij} + c_s^2 \,\delta_{ij} \,\partial^2 \delta \rho + \dots$$

Perturbation Theory with the EFT

A non-renormalization theorem

Can the short distance non-linearities change completely the overall expansion rate of the universe, possibly leading to acceleration without Λ ?

In terms of the short distance perturbation, the effective stress tensor reads

$$\rho_L = \rho_S \left(1 + v_S^2 + \Phi_S \right)$$
$$p_L = \rho_S \left(2v_S^2 + \Phi_L \right)$$

- when objects virialize, the induced pressure vanish
- ultraviolet modes do not contribute (like in SUSY)
- The backreaction is dominated by modes at the virialization scale

$$\Rightarrow w_{\rm induced} \sim 10^{-5}$$

with Baumann, Nicolis and Zaldarriaga JCAP 2012

Perturbation Theory within the EFT

In the EFT we can solve iteratively (loop expansion) $\delta_{\ell}, v_{\ell}, \Phi_{\ell} \ll 1$

$$\nabla^2 \phi = H^2 \frac{\delta \rho}{\rho}$$

$$\partial_t \rho + H \rho + \partial_i (\rho v^i) = 0$$

$$\dot{v}^i + H v^i + v^j \partial_j v^i = \frac{1}{\rho} \partial_j \tau^{ij}$$

$$\tau_{ij} = p_0 \, \delta_{ij} + c_s^2 \, \delta_{ij} \, \partial^2 \delta \rho$$

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$\begin{split} P_{1-\text{loop}} &= c_0^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right)^2 \left(\frac{k}{k_{\text{NL}}}\right) P_{11} + c_1^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} \\ &+ c_2^{\Lambda} \log \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}} \end{split}$$

Wednesday, September 17, 14

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$\begin{split} P_{1-\text{loop}} &= c_0^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right)^2 \left(\frac{k}{k_{\text{NL}}}\right) P_{11} + c_1^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} \\ &+ c_2^{\Lambda} \log \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}} \end{split}$$

absence of counterterm

$$\tau_{ij} = p_0 \,\delta_{ij} + c_s^2 \,\delta_{ij} \,\partial^2 \delta \rho$$

Perturbation Theory within the EFT

- Regularization and renormalization of loops (scaling universe)
- evaluate with cutoff. By dim analysis:

$$P_{1-\text{loop}} = c_0^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right)^2 \left(\frac{k}{k_{\text{NL}}}\right) P_{11} + c_1^{\Lambda} \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11}$$

$$+ c_2^{\Lambda} \log \left(\frac{\Lambda}{k_{\text{NL}}}\right) \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11} + \text{subleading in } \frac{k}{k_{\text{NL}}} \frac{k}{N_{\text{NL}}}$$

absence of counterterm

$$\tau_{ij} = p_0 \,\delta_{ij} + c_s^2 \,\delta_{ij} \,\partial^2 \delta \rho$$

$$\Rightarrow P_{1-\text{loop, counter}} = c_{\text{counter}}^{\Lambda} \left(\frac{k}{k_{\text{NL}}}\right)^{2} P_{11}$$

$$\Rightarrow c_{\text{counter}}^{\Lambda} = -c_{1}^{\Lambda} + \delta c_{\text{counter}} \left(\frac{k_{\text{NL}}}{\Lambda}\right)$$

$$\Longrightarrow P_{1-\text{loop}} + P_{1-\text{loop, counter}} = \delta c_{\text{counter}} \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_{1}^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11}$$

Wednesday, September 17, 14

Calculable terms in the EFT

Has everything being lost?

$$P_{1-\text{loop}} + P_{1-\text{loop, counter}} = \delta c_{\text{counter}} \left(\frac{k}{k_{\text{NL}}}\right)^2 P_{11} + c_1^{\text{finite}} \left(\frac{k}{k_{\text{NL}}}\right)^3 P_{11}$$

- to make result finite, we need to add a counterterm with finite part
- need to fit to data (like a coupling constant), but cannot fit the k-shape

Wednesday, September 17, 14

Calculable terms in the EFT

Has everything being lost?

$$P_{\rm 1-loop} + P_{\rm 1-loop, \ counter} = \delta c_{\rm counter} \left(\frac{k}{k_{\rm NL}}\right)^2 P_{11} + c_{1}^{\rm finite} \left(\frac{k}{k_{\rm NL}}\right)^3 P_{11}$$

- to make result finite, we need to add a counterterm with finite part
- need to fit to data (like a coupling constant), but cannot fit the k-shape
- the subleading finite term is not degenerate with a counterterm.
- it cannot be changed
- it is calculable by the EFT

-so it predicts an observation
$$c_1^{\text{finite}} = 0.044$$

Each loop-order L contributed a finite, calculable term of order

$$P_{ ext{L-loops}} \sim \left(rac{k}{k_{ ext{NL}}}
ight)^{L}$$

- each higher-loop is smaller and smaller
- This happens after canceling the divergencies with counterterms

$$P_{\text{L-loops; without counterterms}} = \left(\frac{\Lambda}{k_{\text{NL}}}\right)^{L} \frac{k^{2}}{k_{\text{NL}}^{2}} P(k)$$

- each loop contributes the same
- Up to 2-loops, we need only the 1-loop counterterm

IR-resummation

with Zaldarriaga 1404

The Effect of Long-modes on Shorter ones

In Eulerian treatment

- Add a long `trivial' force (trivial by GR)
- This tells you that one can resum the IR modes: this is the Lagrangian treatment

Two effects

$$\vec{\pi}(\vec{x}) \rightarrow \vec{\pi}_{\mathrm{inertial}}(\vec{\tilde{x}}) = \vec{\pi}(\vec{x}(\vec{\tilde{x}})) + \rho(\vec{\tilde{x}}) \ \vec{v}(\vec{\tilde{x}})$$

- Shift in coordinates
- Shift in field

Two effects

$$\vec{\pi}(\vec{x}) \to \vec{\pi}_{\rm inertial}(\vec{\tilde{x}}) = \vec{\pi}(\vec{x}(\vec{\tilde{x}})) + \rho(\vec{\tilde{x}}) \; \vec{v}(\vec{\tilde{x}})$$
 – Shift in coordinates

Shift in field

Two effects

$$\vec{\pi}(\vec{x}) \rightarrow \vec{\pi}_{\text{inertial}}(\vec{\tilde{x}}) = \vec{\pi}(\vec{x}(\vec{\tilde{x}})) + \rho(\vec{\tilde{x}}) \ \vec{v}(\vec{\tilde{x}})$$

- Shift in coordinates
- Shift in field

- For fields that are scalar, this naively implies, by GR, that there are no IR effects in Fourier space at equal time correlators
- both modes are shifted the same way

with Frieman and Scoccimarro 1996

with Carrasco, Foreman and Green 1304 used to find the so-called consistency conditions in GR

Creminelli, Norena, Simonovic 1309

- The universe has features!
- Even on equal time correlators, IR modes of order the BAO scale do not cancel!
- In Fourier space these are the wiggles
- To compute the width, IR-BAO modes are relevant some
- But they just do kinematics, so we can resum them! 2000

Results

- We know when we should fail, and we fail when we should

- The lines with oscillations are obtained without resummation in the IR
- Getting the BAO peak wrong

we fit until $k_{\rm max} \simeq 0.6 \, h \, {\rm Mpc^{-1}}$, as where we should stop fitting

- there are 200 more quasi linear modes than previously believed!

with Zaldarriaga 1404

- Comparison with Standard Treatment (feel free to ask about RPT)

For the EFT, change from 1-loop to 2-loop predicted
$$P_{\text{EFT-2-loop}} = P_{11} + P_{\text{1-loop}} + P_{\text{2-loop}} - 2 \left(2\pi\right) (c_{s(1)}^2 + c_{s(2)}^2) \frac{k^2}{k_{\text{NL}}^2} P_{11} + (2\pi) c_{s(1)}^2 P_{\text{1-loop}}^{(c_s,p)} + (2\pi)^2 c_{s(1)}^4 \frac{k^4}{k_{\text{NL}}} P_{11} + (2\pi)^2 c_{s(1)}^4 P_{\text{1-loop}}^4 + (2\pi)^2 c_{s(1)}^4 \frac{k^4}{k_{\text{NL}}^4} P_{11} + (2\pi)^2 c_{s(1)}^4 P_{\text{1-loop}}^4 + (2\pi)^$$

- the other new terms are clearly important
- they `conspire' to the right answer

The BAO peak in 5 minutes?

The IR-resummation is crucial to get the BAO peak right.

- we can do this very quickly.

with Zaldarriaga 1404

Measuring Parameters from small N-body Simulations

Measuring parameters from N-body sims.

- The EFT parameters can be measured from small N-body simulations
- similar to what happens in QCD: lattice sims
- As you change smoothing scale, the result changes

- Perfect agreement with fitting at low energies
- like measuring F_{π} from lattice sims and $\pi\pi$ scattering

Measuring parameters from N-body sims.

- The EFT parameters can be measured from small N-body simulations
- similar to what happens in QCD: lattice sims
- As you change smoothing scale, the result changes

Perfect agreement with fitting at low energies

- like measuring
$$F_{\pi}$$
 from lattice sims and $\pi\pi$ scattering
$$[\partial_{i}\partial_{j}v_{k}](\vec{r}) = [\partial_{i}\partial_{j}\pi_{k}](\vec{r})/[\rho](\vec{r}) - [\partial_{i}\pi_{k}](\vec{r})[\partial_{j}\rho]/([\rho](\vec{r}))^{2} - [\partial_{j}\pi_{k}](\vec{r})[\partial_{i}\rho]/([\rho](\vec{r}))^{2}$$

$$- UV dof - [\pi_{k}](\vec{r})[\partial_{i}\partial_{j}\rho](\vec{r})/([\rho](\vec{r}))^{2} + 2[\pi_{k}](\vec{r})[\partial_{i}\rho](\vec{r})[\partial_{j}\rho](\vec{r})/([\rho](\vec{r}))^{3}$$
 arrasco and Hertzberg **JHEP 2012**

Other Observables

Momentum and Bispectrum

Wednesday, September 17, 14

and Redshfit space distortions

with Zaldarriaga 1409

- Momentum is a natural quantity, as connected to density by conservation law
- Velocity is not a natural quantity $\vec{v}(\vec{x}) = \frac{\vec{\pi}(\vec{x})}{\rho(\vec{x})}$
- It is a local composite operator: needs its own new counterterms:

$$v_{l,R}(\vec{x},t) = v_l(\vec{x},t) - e_1 \partial \delta(\vec{x},t) + \cdots$$

- no new counterterm for the equations
- Because of this, and because it is a viscous fluid, we generate vorticity

$$\langle \omega_k^2 \rangle \sim \alpha_1 \left(\frac{k}{k_{\text{implement.}}} \right)^2 + \alpha_2 \left(\frac{k}{k_{\text{NL}}} \right)^{\sim 3}$$

- from local counterterm
- from viscosity
- Predicted result seems to be verified in sims

- Momentum is a natural quantity, as connected to density by conservation law
- Velocity is not a natural quantity $\vec{v}(\vec{x}) = \frac{\vec{\pi}(\vec{x})}{\rho(\vec{x})}$
- It is a local composite operator: needs its own new counterterms:

$$v_{l,R}(\vec{x},t) = v_l(\vec{x},t) - e_1 \partial \delta(\vec{x},t) + \cdots$$

- no new counterterm for the equations
- Because of this, and because it is a viscous fluid, we generate vorticity

$$\langle \omega_k^2 \rangle \sim \alpha_1 \left(\frac{k}{k_{\text{implement.}}} \right)^2 + \alpha_2 \left(\frac{k}{k_{\text{NL}}} \right)^{\sim 3}$$

- from local counterterm
- from viscosity
- Predicted result seems to be verified in sims

- Momentum is a natural quantity, as connected to density by conservation law
- Velocity is not a natural quantity $\vec{v}(\vec{x}) = \frac{\vec{\pi}(\vec{x})}{\rho(\vec{x})}$
- It is a local composite operator: needs its own new counterterms:
- $v_{l,R}(\vec{x},t) = v_l(\vec{x},t) e_1 \partial \delta(\vec{x},t) + \cdots$

- no new counterterm for the equations
- Because of this, and because it is a viscous fluid, we generate vorticity

$$\langle \omega_k^2 \rangle \sim \alpha_1 \left(\frac{k}{k_{\text{implement.}}} \right)^2 + \alpha_2 \left(\frac{k}{k_{\text{NL}}} \right)^{\sim 3}$$

- from local counterterm
- from viscosity
- Predicted result seems to be verified in sims

- Momentum is a natural quantity, as connected to density by conservation law
- Velocity is not a natural quantity $\vec{v}(\vec{x}) = \frac{\vec{\pi}(\vec{x})}{\vec{r}(\vec{x})}$
- It is a local composite operator: needs its own new counterterms:

$$v_{l,R}(\vec{x},t) = v_l(\vec{x},t) - e_1 \partial \delta(\vec{x},t) + \cdots$$

- no new counterterm for the equations
- Because of this, and because it is a viscous fluid, we generate vorticity

$$\langle \omega_k^2 \rangle \sim \alpha_1 \left(\frac{k}{k_{\text{implement.}}} \right)^2 + \alpha_2 \left(\frac{k}{k_{\text{NL}}} \right)^{\sim 5}$$

- from local counterterm
- from viscosity
- Predicted result seems to be verified in sims

- Momentum is a natural quantity, as connected to density by conservation law
- Velocity is not a natural quantity $\vec{v}(\vec{x}) = \frac{\vec{\pi}(\vec{x})}{\vec{r}(\vec{x})}$
- It is a local composite operator: needs its own new counterterms:

$$v_{l,R}(\vec{x},t) = v_l(\vec{x},t) - e_1 \partial \delta(\vec{x},t) + \cdots$$

- no new counterterm for the equations
- Because of this, and because it is a viscous fluid, we generate vorticity

$$\langle \omega_k^2 \rangle \sim \alpha_1 \left(\frac{k}{k_{\text{implement.}}} \right)^2 + \alpha_2 \left(\frac{k}{k_{\text{NL}}} \right)^{\sim}$$

- from local counterterm
- from viscosity
- Predicted result seems to be verified in sims
- Former analytic techniques got zero
 End to SPT-like resummations

Wednesday, September 17, 14

EFT of Large Scale Structures

- A manifestly convergent perturbation theory $\left(\frac{k}{k_{\mathrm{NL}}}\right)^{L}$
- we fit until $k_{\rm max} \simeq 0.6 \, h \, {\rm Mpc}^{-1}$, as where we should stop fitting
- there are 200 more quasi linear modes than previously believed!
- huge impact on possibilities, for ex: $f_{
 m NL}^{
 m equil.,\,orthog.} \lesssim 1$
- Can all of us handle it?! This is an huge opportunity and a challenge for us

With this

Conclusions

- Many (most?) of the features of QFT appear in the EFT of LSS:
- Loops, divergencies, counterterms and renormalization
- non-renormalization theorems
- Calculable and non-calculable terms
- Measurements in lattice and lattice-running
- IR-divergencies
- Results seem to be amazing, many calculations and verifications to do:
- like if we just learned perturbative QCD, and LHC was soon turning on
- higher n-point functions
- Validation with simulation
- Zurich..., just after 2-loop result, a workshop was organized by Princeton) With a growing number of groups (Caltech, Princeton, IAS, Cambridge, CEA,
- If this works, the 10-yr future of Early Cosmology is good, even with no luck